CONNECTEDNESS OF BOWDITCH BOUNDARY OF DEHN
FILLINGS
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ABsTRACT. We study Dehn fillings of relatively hyperbolic group pairs
(T',P) and the persistence of connectedness of Bowditch boundary in
sufficiently long Dehn fillings. We show that the restriction of peripheral
subgroups to virtually polycyclic subgroups (as in [GM18]) is not needed.

1. INTRODUCTION

In [GMO8| and [Osi07], Groves, Manning and Osin study group-theoretic
Dehn fillings. In this paper we look into Dehn fillings of relatively hyperbolic
group pairs in the spirit of [GMOS].

Our main result concerns the persistence of properties of relative oneend-
edness, nonsplitting over parabolic subgroups and connectedness properties
of Bowditch boundary. These questions are studied with restriction on pe-
ripheral subgroups by Groves and Manning in [GM18|.

Theorem 1.1. [GM18, Theorem 1.6| Let G be a group which is hyper-
bolic relative to a finite collection P of subgroups, and suppose that all small
subgroups of G are finitely generated. Furthermore, suppose that G admits
no nontrivial elementary splittings. Then all sufficiently long M-finite co-
slender fillings (G,P) — (G, P) have the property that G admits no nontrivial
elementary splittings.

We study the relative case of this theorem and show that the assump-
tion of small subgroups being finitely generated is no longer needed if the
splittings (or non-splittings) are assumed to be relative to P. This required
certain observations in the proofs contained in [GM18| and an application of
a relative version of Rips machine due to [GL15b]. We prove the following
theorem.

Theorem 1.2. Let (G,P) be a relatively hyperbolic group pair that admits no
elementary splitting relative to P. Then all sufficiently long M—finite fillings
(G,P) — (G,P) have the property that G admits no elementary splitting
relative to P.

Next we study the boundary of sufficiently long Dehn fillings. Groves and
Manning prove the following theorem with some assumptions on peripheral
subgroups.
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Theorem 1.3. [GM18, Theorem 1.9| Suppose that (G,P) is relatively hy-
perbolic, with P consisting of virtually polycyclic groups. Suppose further
that the Bowditch boundary (G, P) is connected with no cut point. Then for
all sufficiently long M-finite fillings (G,P) — (G, P), the resulting boundary
0 (G,POO) s connected and has no cut points.

We show that the assumption of peripheral subgroups being virtually poly-
cyclic is not necessary. In this context we use JSJ theory (see [GL17]) and
a cut point theorem due to [DH22| to study the boundary. We prove the
following theorem.

Theorem 1.4. Suppose (G,P) is relatively hyperbolic. Suppose further that
the Bowditch boundary O(G,P) is connected with no cut point.
Then for all sufficiently long M—finite fillings (G,P) — (G, P), the result-

ing boundary of O(G,P>®) is connected and has no cut points.

Acknowledgements. We thank Christopher Hruska and Daniel Groves for
helpful comments.

2. PRELIMINARIES

In this section we put definitions and results used in this paper. For more
details see [GM18| and [DH22|. We begin with a definition for relatively
hyperbolic group pairs. There are several equivalent definitions of relative
hyperbolicity. The definition we use here is from [MS20]. It is equivalent to
Bowditch [Bow12] and [GM18]. See [Hrul0, Theorem 5.1] for more details.

Definition 2.1. A geodesic space X is d—hyperbolic if each side of a geodesic
triangle lies in the d—neighborhood of the union of the other two sides.

Definition 2.2. A group pair (I',P) consists of a group I' together with a
finite collection P of subgroups of I". Given a group pair (I',[P), an action of
I" on X is relative to P if each member of P has a fixed point in X.

Definition 2.3 (Horoball). Let I' be a connected graph with V' and F
denoting the set of vertices and edges of I, such that every edge has length
1. Let T = [0,1]x[1, 00) C H? in the upper half plane model of the hyperbolic
plane. Glue a copy of T to each edge in E along [0, 1] x {1} and identify the
rays {v} x [1,00) for all v € V. The quotient space with the natural path
metric is defined as the horoball B(T").

Definition 2.4 (Cusped space, relatively hyperbolic group pair, peripheral
subgroups). Let G be a finitely generated group and P = {P;,--- ,P;} is a
collection of proper finitely generated subgroups of G. Suppose S be a finite
generating set for G, so that SN P; generates P; for each ¢ =1,--- | k.

Let I'(G) = T'(G, S) be the Cayley graph of G with respect to S, with
word metric dg. Let Y be the disjoint union of I'(G) and copies of Byp, of
B(T(P;, SN P;) for each left coset hP; and each P; € P. Let X = X(G,P) =
Y/ ~, where for each left coset hP; and each g € hP; the equivalence relation
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~ identifies g € I'(G, S) with (g,1) € Bp,. We endow X with the induced
path metric d, which makes (X, d) a proper geodesic metric space.

We say that X is cusped space. Furthermore (G,P) is a relatively hyper-
bolic group pair if (X,d) is Gromov hyperbolic. We call the members of P
peripheral subgroups.

Remark 2.5. In this paper we consider only finitely generated relatively
hyperbolic groups. We do not assume that the elements of P are infinite.
We denote the collection of infinite members P by P and collection of
nonhyperbolic subgroups as P¢4.

Definition 2.6 (Elementary subgroup). Any subgroup of conjugates of the
members P is called parabolic subgroup. A subgroup E < G is elementary if
it is either finite, two ended or parabolic.

Definition 2.7 (Elementary splitting). Suppose a relatively hyperbolic group
G splits as a graph of groups such that the edge groups are elementary sub-
groups of G. We call such splittings as elementary splittings.

Let G be any group, and let A be a family of subgroups closed under
conjugation. Suppose G acts on a simplicial tree T" without inversions and
with no proper invariant subtree. Then T is an A—tree if each edge stabilizer
is a member of A. Suppose (G,P) is a group pair. An (A,P)—tree is an A—
tree T such that each member of PP has a fixed vertex in 7. Two (A, P)—trees
are equivalent if there are I'-equivariant maps T — T and also 7" — T'. If
T is not a point, then we say that G splits over A relative to P.

Definition 2.8 (Peripheral Splitting). Suppose that (G,P) is a relatively
hyperbolic group pair. A peripheral splitting of (G,P) is a bipartite graph of
groups with fundamental group G where the vertex groups of one color are
precisely the conjugates of peripheral subgroups P.

Definition 2.9. An action of a group G on a tree T in (k, C)-acylindrical if
the stabilizer of any segment of length at least k 4+ 1 has cardinality at most

C.

Definition 2.10. A collection of subgroups P os a group G is C-almost
malnormal if there is a constant C' so that

| Py ﬂnggfl)| >(C, for geG,P,P,eP
implies P, = P, and g € P;.

Lemma 2.11. [GM18, Lemma 3.3| Suppose (G,P) is a relatively hyperbolic
group pair. Then P is C-almost malnormal for some C.

Definition 2.12. Suppose that (G, P) is a relatively hyperbolic group pair,
and let F be the set of subgroups of G which are either finite nonparabolic or
contained in the intersection of two distinct maximal parabolic subgroups.

Define C(G,P) = max{|F|: F € F}.
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Lemma 2.13. [GM18, Lemma 4.4] For (G,P) relatively hyperbolic,
C(G,P) <

2.1. Dehn Fillings.

Definition 2.14. Suppose that G is a group and P = {P},--- ,P,} is a
collection of subgroups. A Dehn filling (or just filling) of (G,P) is a quotient
map: ¢ : G — G/K, where K is the normal closure in G of some collection
K; < P;. We write
G/K =G(Ky, - ,Ky)

for this quotient. The subgroups Ki,--- , K, are called the filling kernels.
We also write ¢ : (G,P) — (G, P) where P is the collection of images of all
the P € P.

We say that a property holds for all sufficiently long fillings of (G,P) if
there is finite B € G — {1} so that whenever K; N B = & for all ¢, the group
G /K has the property.

Proposition 2.15. [GM18, Proposition 3.4] If (G, P) is relatively hyperbolic,
then P is C-almost malnormal, then for all sufficiently long fillings (G, P) of
(G,P), the collection P is C-almost malnormal.

Definition 2.16. A group H is small if H has no subgroup isomorphic to
a non-abelian free group. A group H is slender if every subgroup of H is
finitely generated.

Definition 2.17. Let (G,P) be a group pair and let M be the class of all
finitely generated groups with more than one end. We say that a filling of
(G,P) is M-finite if for all P € M NP, the associate filling kernel K < P
has finite index in P. We say that a filling of (G,P) is co-slender if for all
P € P with associated filling K, the group P/K is slender.

Remark 2.18. Suppose ¢ : (G,P) — (G,P) is a sufficiently long Dehn
filling of a relatively hyperbolic group pair. Note that (G, P) is also relatively
hyperbolic by [GM18, Theorem 2.17|. Moreover (G,P>) and (G,P"?) are
also relatively hyperbolic group pairs though their Bowditch boundary may
be different (see [GM18, Section 7.2]).

3. RELATIVE ELEMENTARY SPLITTINGS

In this section we study the elementary splittings of a relatively hyper-
bolic group pair (G,P) relative to P. We upgrade such splittings to (2,C)-
acylindrical splittings relative to P. All of the results in this section can be
easily deduced from the proofs in Section 3 and 4 in [GM18|. The slenderness
related hypothesis becomes unnecessary as we consider elementary splittings
relative to P. We put the relevant statements for the sake of completion.

We begin by studying splittings over parabolic subgroups. The following
lemma follows directly from the proof of [GM18, Lemma 3.6]. In fact, as we
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consider relative splittings, the hypothesis does not require the slenderness
of parabolic subgroups.

Lemma 3.1. Suppose (G,P) is relatively hyperbolic where P is a C-almost
malnormal collection of subgroups. If G admits a nontrivial splitting over
a parabolic group relative to P, then G admits a (2, C)—acylindrical splitting
over a parabolic subgroup relative to P.

Proof. Let H be a parabolic subgroup in G and suppose G splits over H
relative to P. Without loss of generality, H < P for some P € P. Since P is
C-almost malnormal, if |H| < C then we are done. Otherwise suppose that
|H| > C.

Let T be the Bass-Serre tree for this splitting. P fixes some point p € T

If P fixes some edge e € T, then each stabilizer is g~' Pg for some g € G
and P = H. Since P is C-almost malnormal, any segment of length 2 or more
has stabilizer of size C' or less. Hence the action of G is (1, C')-acylindrical.

If P does not fix a vertex and not an edge in 7', then stabilizer of any
segment of length 3 or more is contained in a pair of conjugates of P. Hence
the size of the stabilizer is C' or less. In this case the action of G on T is
(2, C)-acylindrical. O

The following proposition follows immediately from [GM18, Proposition
3.7] and does not require co-slenderness hypothesis Lemma 3.1 does not need
slenderness hypothesis. We include a proof for the sake of completion.

Proposition 3.2. Suppose (G,P) is a relatively hyperbolic group pair. For
all sufficiently long fillings (G,P) — (G, P), if G admits a nontrivial splitting
over a parabolic subgroup relative to P then G admits a non trivial (2,C)~
acylindrical splitting over a parabolic subgroup relative to P.

Proof. If (_@,IF)) is a sufficiently long filling, then by Proposition 2.15, the
collection P is C-malnormal. Then by Lemma 3.1, we conclude that G admits

a non trivial (2, C)-acylindrical splitting over a parabolic group relative to
P. O

Lemma 3.3. [GM18, Corollary 4.5] Let (G,P) be relatively hyperbolic group
pair. For all sufficiently long fillings (G,P), we have C(G,P) < C(G,P).

Next we examine the splittings over finite subgroups. Notice that the
following lemma works without co-slenderness hypothesis as Proposition 3.2
does not require co-slenderness hypothesis.

Lemma 3.4. Suppose (G,P) is relatively hyperbolic. For all sufficiently long
fillings (G,P) — (G, P), if G admits a non trivial splitting over a finite group
relative to P, then G admits a nontrivial (2, C)-acylindrical splitting over a
finite or parabolic group relative to P, where C' = C(G,P).

Proof. Suppose G admits a splitting over a finite subgroup K relative to P.
Then K is a either parabolic or non-parabolic.
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If K is non-parabolic, then by Lemma 3.3, if the filling is sufficiently long,
then |K| < C. Therefore the Bass-Serre tree corresponding to the splitting
is (0, C')-acylindrical.

If K is parabolic then by Proposition 3.2 we are done. U

Next we examine the case of splittings over two-ended subgroups relative
to P. Notice that the relative version of [GM18, Lemma 4.9] does not re-
quire the co-slenderness hypothesis as Lemma 3.1 does not need slenderness
hypothesis. Hence we have the following lemma from the proof of [GM18,
Lemma 4.9].

Lemma 3.5. Let (G,P) be relatively hyperbolic and let C = 2C(G,P). If
G admits a nontrivial splitting over a two-ended non-parabolic subgroup rel-
ative to P, then G admits a nontrivial (2, C)-acylindrical splitting over an
elementary subgroup relative to P.

Proof. Suppose G splits over non-parabolic two ended subgroup H relative
to P and H is the maximal two ended subgroup containing H. Extend the
peripheral structure to P’ = P U {H}. Note that (G,P’) is also a relatively
hyperbolic group pair and C(G,P’) < C by [GM18, Lemma 4.8]. Therefore
by Lemma 3.1, note that G admits a (2, C)-acylindrical splitting over P'-
parabolic subgroup H'. If H’' is conjugate into a member of P then we are
done. Otherwise H' is cojugate to a subgroup of H hence it must be finite
or two-ended. This provides us with the necessary elementary splitting. U

Finally we have the relative version of [GM18, Proposition 4.10|. It does
not require the co-slenderness hypothesis as Lemma 3.5 does not need co-
slenderness hypothesis.

Proposition 3.6. Suppose (G, P) be relatively hyperbolic and let C = 2C(G, P).
For all sufficiently long fillings (G,P) — (G,P) if G admits a nontrivial split-
ting over a two-ended non-parabolic subgroup relative to P, then G admits a

nontrivial (2,C)—acylindrical splitting over an elementary subgroup relative
to P.

Proof. C(G,P) < C(G,P) for sufficiently long fillings by Lemma 3.3. Then
by Lemma 3.5, we are done. U

4. ACTION ON R-TREE

In this section we construct an R—tree starting with a sequence of fillings of
a relatively hyperbolic group pair (G,P). We will use this tree in subsequent
sections along with a structure theorem to prove the main theorems. We
first prove a lemma that upgrades a sequence of elementary splittings to
(2, C)-acylindrical elementary splittings.

Lemma 4.1. Suppose that (G,P) is a relatively hyperbolic group pair such
that there is a stably faithful sequence of M—finite fillings ¢; : (G,P) —
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(G, ), so that each G; admits a nontrivial elementary splitting relative to

P;.
Let C = 20(G,P). Then there is a stably faithful sequence of M-finite
filings n; : (G,P) — (G;,P;), so that each G; admits a nontrivial (2,C)-
acylindrical elementary splitting relative to P;.

Proof. By Corollary 3.4, Proposition 3.2 and Proposition 3.6, for sufficiently
large i, the conclusion immediately follows. [l

Suppose we have a relatively hyperbolic group pair (G,P) and a stably
faithful sequence of M-finite filings n; : (G,P) — (G;, ), so that each
G, admits a nontrivial (2, C)-acylindrical elementary splitting relative to P;.
Then each G; acts (2, C)-acylindrically on the Bass Serre tree T; such that
each member of P; is conjugated into the vertex groups of 7;. The argument
in [GM18, Section 5| goes through and we construct a limiting tree T, on
which G acts relative to P.

Lemma 4.2. [GM18, Section 5] The action of G on Tx, has no global fized
point and relative to P with elementary arc stabilizers.

Notice that none of the results used in the following proof uses the fact
that small subgroups of G are finitely generated.

Proof. G acts on T, without global fixed points by [GM18, Lemma 5.4]|.
Using the argument in the proof of [GM18, Lemma 5.5], we conclude that
the action is relative to P. By [GM18, Corollary 5.8], the arc stabilizers
are small and therefore by [GM18, Corollary 5.11|, the arc stabilizers are
elementary. O

The fundamental structure theorem for stable actions of finitely presented
groups on R-trees is the splitting theorem of Bestvina—Feighn [BF95]. A
relatively hyperbolic analogue of the Bestvina—Feighn structure theorem due
to Guirardel-Levitt [GL15a| gives the following theorem.

Theorem 4.3. [GL15b, Corollary 9.10] Let (G,P) be a relatively hyperbolic
group pair. If G acts non-trivially on an R-tree T relative to P with ele-
mentary arc stabilizers, then G splits over an elementary subgroup relative
to P

5. MAIN RESULTS

The first part of the proof of the following theorem is essentially available
in [GM18|. We feed the Dehn fillings into Theorem 4.3 to obtain the conclu-
sion. We state the statement and sketch the structure of the argument for
the sake of completion.

Theorem 5.1. Let (G,P) be a relatively hyperbolic group pair that admits no
elementary splitting relative to P. Then all sufficiently long M~finite fillings
(G,P) - (G,P) have the property that G admits no elementary splitting

relative to P.
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Proof. Suppose (G, P) is a counterexample to this theorem. Then there exists
a non-trivial action of G on an R-tree Ty, relative to P with elementary
arc stabilizers by Lemma 4.1 and Lemma 4.2. Then by Theorem 4.3 we
conclude that G admits an elementary splitting relative to P which is a
contradiction. O

Theorem 5.2. Let (G,PP) be relatively hyperbolic, relatively one-ended and
admits no proper peripheral splittings. Then all sufficiently long M—finite
fillings (G,P) — (G, P) have the property that G is one-ended relative to P>
and admits no splitting over parabolic subgroups relative to P>.

Proof. Let G be a counterexample to this theorem. Then G is not one ended
relative to P*°. Hence G admits a splitting over a finite subgroup F relative
to P*°. We have two cases : either F' is parabolic or F is nonparabolic
subgroup of G.

Suppose F is parabolic. As G admits a splitting over a parabolic subgroup
relative to P>, therefore (G,P>) admits a peripheral splitting in which all
members of P are elliptic. Consider the induced action of G on the Bass—
Serre tree T of this peripheral splitting (G,P). Clearly all the members of
P act elliptically and all the edge stabilizers are parabolic. This implies a
proper peripheral splitting of (G,P) contradicting the given hypothesis.

Now suppose F' is non-parabolic. Let A be the collection of non-parabolic
finite groups. The order of the members in A is bounded by [GM18, Lemma
4.3|. Hence by [GL17, Section 3.3|, there is a JSJ splitting T" over A relative
to P>*. Again consider the induced action of G on T. Since F is non-
parabolic, hence it is isomorphic to a finite subgroup F’ of G by [GMIS,
Theorem 4.1|. Clearly the action of G on T is relative to P with a finite
group F’ as an edge stabilizer of T' contradicting the relative one endedness

of G. (]

Theorem 5.3. [DH22, Theorem 1.1] Suppose (G,P) is relatively hyperbolic.
Suppose further that the Bowditch boundary O(G,P) is connected. Then
J(G,P) has a cut point if and only if (G,P) has a non trivial peripheral
splitting.

Theorem 5.4. Suppose (G,P) is relatively hyperbolic. Suppose further that
the Bowditch boundary O(G,P) is connected with no cut point.

Then for all sufficiently long M~finite fillings (G,P) — (G, P), the result-
ing boundary of O(G,P>) is connected and has no cut points.

Proof. Since there is not cut point in the boundary, hence by Theorem 5.3,
we know that (G,P) has no proper peripheral splitting.

Then by Theorem 5.2, for sufficiently long M-finite fillings (G,P) —
(G,P), we know that (G,P>) is relatively one-ended and has no proper
peripheral splittings. Then by [Bowl2, Theorem 10.1], we conclude that
O(G,P>) is connected and by [DH22, Theorem 1.1], it has no cut points. [J
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